How to Deploy Confidential Computing Workloads on OpenMetal Infrastructure

Confidential computing workloads on bare metal is a new approach to protecting sensitive data—not just when it’s stored or transmitted, but while it’s actively being used. With growing security concerns and stricter data regulations, more organizations are asking how to make this a practical part of their infrastructure.

In this blog, we’ll break down how you can use OpenMetal’s bare metal servers to support confidential workloads using Intel TDX. Whether you’re working with protected health data, training machine learning models, or handling financial transactions, OpenMetal gives you the tools and control to keep it secure.

For a broader look at the technology, see our overview on Confidential Computing Benefits and Use Cases.

What You Need for Confidential Computing Workloads

To build a confidential computing environment, you’ll need:

  • Hardware-level security features like Intel TDX (Trust Domain Extensions)
  • Trusted Execution Environments (TEEs) that isolate data in memory
  • Operating systems and hypervisors that support those features
  • Full control over the hardware and how it’s configured

Note: Intel® Software Guard Extensions (SGX), Intel® Trust Domain Extensions (TDX), AMD® SEV, and Arm® TrustZone are examples of hardware-based TEEs.

Why OpenMetal Is a Fit for Confidential Computing Workloads

OpenMetal gives teams the flexibility and access they need to deploy secure workloads:

  • Bare Metal Control: Full access to physical servers without shared tenants
  • Intel 5th Gen CPUs with TDX: Available on our Medium V4, Large V4, XL V4, and XXL V4 bare metal configurations. You can also add H100 GPUs to XXL V4 servers for workloads that need acceleration.
  • GPU Support via PCIe Passthrough: You can attach the H100 to Intel TDX-enabled VMs using PCIe passthrough.
  • Fast, Isolated Networking: Redundant 10Gbps with VLAN segmentation
  • Encrypted Storage: Attach encrypted volumes to workloads as needed
  • Open APIs and CLI: Automate secure deployments

A Practical Guide to Deploying Confidential Workloads on OpenMetal

  1. Choose Intel TDX-Ready Hardware: Use OpenMetal’s Medium, Large, XL, or XXL configurations featuring 5th Gen Intel CPUs and optional H100 GPUs on the XXL. These servers come configured to launch TDX-enabled virtual machines.
  2. Deploy Virtual Machines with Intel TDX: Launch TDX-enabled VMs on supported nodes. These VMs benefit from memory and execution isolation from other workloads and the hypervisor.
  3. Attach GPUs with PCIe Passthrough (Optional): If your workload requires a GPU, the H100 can be passed through directly to your TDX-enabled VM using PCIe passthrough. This enables GPU acceleration while keeping CPU and memory data isolated.
  4. Secure Storage and Networking: Use encrypted volumes and VLAN-based network isolation to strengthen your setup. These security layers support the integrity and protection of your environment.
  5. Monitor and Validate: Deploy internal tools or third-party solutions to validate the state of your confidential computing environment. Monitoring configurations and access helps ensure ongoing protection and compliance.

Common Use Cases

  • Healthcare: Analyze PHI while maintaining HIPAA compliance
  • AI/ML: Protect training data and proprietary models
  • Finance: Run encrypted models for fraud detection or trading
  • Web3/Crypto: Safeguard wallet data and blockchain metadata from exposure

 

Final Thoughts 

Confidential computing workloads are already making an impact across real-world production environments. OpenMetal provides a reliable path to deploying secure infrastructure through Intel TDX-enabled hardware and GPU passthrough capabilities.

If you’re ready to explore confidential computing, contact our team to get started.

Read More on the OpenMetal Blog

How PE Firms Can Reduce Cloud Costs Across Their SaaS Portfolio with OpenMetal

PE firms face mounting cloud costs across SaaS portfolios. Learn how OpenMetal’s private cloud delivers 30-60% cost savings, predictable pricing, and improved margins that directly boost portfolio valuations and exit multiples.

20 Gbps NICs and Free Internal Traffic Matter: The Hidden Power of OpenMetal’s Private Networking

Learn how OpenMetal’s private networking architecture delivers 20 Gbps per server, free internal traffic, customer-specific VLANs with VXLAN support, and predictable egress billing. Perfect for AI training clusters, database replication, and high-throughput workloads requiring performance without bandwidth constraints.

Private Cloud vs. Public Cloud for Confidential Workloads: A Risk and Control Comparison

Public cloud confidential computing promises security but retains provider control over critical trust components. Private cloud infrastructure eliminates third-party trust dependencies, providing genuine confidentiality for sensitive workloads through dedicated hardware and transparent attestation.

Powering Your Data Warehouse with PostgreSQL and Citus on OpenMetal for Distributed SQL at Scale

Learn how PostgreSQL and Citus on OpenMetal deliver enterprise-scale data warehousing with distributed SQL performance, eliminating vendor lock-in while providing predictable costs and unlimited scalability for modern analytical workloads.

Secure Oracles and Smart Contracts: The Role of Confidential Computing in Decentralized Trust

Explore how confidential computing transforms blockchain security by protecting oracle data feeds and smart contract execution. This guide covers implementation strategies, performance optimization, and deployment best practices for building secure decentralized applications on OpenMetal’s bare metal infrastructure.

5 Blockchain Workloads That Absolutely Should Not Be on Shared Public Cloud

Discover five blockchain workloads that demand dedicated infrastructure over shared public cloud. From validator nodes to MEV systems, learn why bare metal servers and private cloud provide the performance, security, and control these critical operations require.

Confidential Computing AI for Healthcare: Protecting Models, Data, and IP at the Infrastructure Layer

Learn how confidential computing infrastructure protects PHI, AI models, and proprietary algorithms during processing. Discover implementation strategies for HIPAA-compliant AI workloads on OpenMetal’s secure bare metal platform, including real-world healthcare use cases and deployment guides.

Why Retail Organizations Need Private AI Infrastructure for Image Generation

Retail brands face a dilemma: AI image generation tools offer unprecedented speed, but public APIs expose intellectual property, violate compliance, and create unpredictable costs. Private AI infrastructure solves these challenges while delivering superior ROI.