Confidential Computing Performance How to Balance Security and Speed on Bare Metal

Confidential computing helps keep your data safe while it’s being used—not just stored or sent. But how does it impact speed? In this blog, we explore confidential computing performance, what slows things down, and how to keep systems running fast and secure on bare metal.

New tech like Intel TDX helps protect your data without slowing things down too much. This post explains how it works, what can cause delays, and how OpenMetal helps avoid slowdowns using smart infrastructure and tools.

Understanding the Performance Trade-Offs

Confidential computing adds security by encrypting memory and separating your data from the rest of the system. This is great for security, but it can slow things down — especially when your system has to do a lot of input/output (I/O) like reading from a disk or sending data across the network.

With Intel TDX, normal computer tasks like using memory or running calculations might be about 5–15% slower. If your app needs to move a lot of data in and out, it might slow down more — sometimes 20–60% — unless you set it up the right way.

How to Keep Things Fast

  • Pick the right server with enough CPU and memory for your workload.
  • Group work into batches to reduce system slowdowns (called ‘VM exits’).
  • Use fast storage like NVMe and make sure your networking is set up cleanly.
  • If you need a GPU, send data safely and encrypt it before moving it to the GPU.

How OpenMetal Helps

OpenMetal is designed to support high confidential computing performance through optimized hardware, PCIe passthrough for GPUs, and fast NVMe storage. OpenMetal gives you direct access to powerful servers with Intel TDX and fast storage and networking. You can choose from Medium to XXL configurations that use 5th Gen Intel CPUs. 

If you need to run AI or other demanding apps, you can attach an H100 GPU to your virtual machine using PCIe passthrough. You get the GPU power without giving up the memory protection TDX provides. Just remember — GPU memory isn’t protected by TDX, so keep your sensitive data safe before sending it to the GPU. 

Who Should Use Confidential Computing?

  • Healthcare companies that work with private patient data.
  • Banks or finance teams running secure models.
  • AI companies training on sensitive data.
  • Blockchain and crypto teams managing secure keys or wallets.

Table: Security vs. Speed — What Slows Down and How to Fix It

The table below shows common bottlenecks that affect confidential computing performance and how to reduce them using the right infrastructure and configuration.

What It AffectsHow Much It Slows Down

What You Can Do

CPU/Memory5–15% slowerUse high-core CPUs and tune memory settings
Disk I/O20–60% slowerUse NVMe storage and reduce disk chatter
NetworkingCan add delay

Use isolated 10Gbps links and VLANs

GPU WorkloadsGPU memory not protectedEncrypt data before sending it to the GPU

Ready to Try It?

With the right setup, you can improve confidential computing performance without sacrificing security. If you want to test confidential computing for yourself using Intel TDX, check out OpenMetal’s platform. You get full control over your hardware, fast setup, and support for advanced security features. Learn more or contact us today.

Read More on the OpenMetal Blog

Chennai – Private Cloud and Bare Metal Dedicated Servers

OpenMetal offers private cloud, bare metal dedicated servers, and colo out of their data center near Chennai, India

The Infrastructure Needed for a Successful VMware to Proxmox Migration

Moving off VMware? Infrastructure planning comes first. This article breaks down specific hardware requirements for Proxmox, including CPU core counts, RAM formulas for Ceph storage, and essential network architecture to ensure your new cluster matches VMware’s performance and stability.

Singapore Private Cloud, Bare Metal Servers, GPU Servers – Data Center and Colo

Singapore and APAC based businesses benefit from hosting their applications on OpenMetal’s dedicated servers and cloud infrastructure located in the heart of Singapore.

How to Prepare Your BNB Chain Infrastructure for 20,000 TPS

BNB Chain’s 2026 roadmap targets 20,000 transactions per second with new Rust-based clients and Scalable DB architecture. Node operators need to understand the dual-client strategy, hardware requirements, and infrastructure implications. Learn how to prepare your validators and nodes for this scale.

FinOps for AI Gets Easier with Fixed Monthly Infrastructure Costs

AI workload costs hit $85,521 monthly in 2025, up 36% year-over-year, while 94% of IT leaders struggle with cost optimization. Variable hyperscaler billing creates 30-40% monthly swings that make financial planning impossible. Fixed-cost infrastructure with dedicated GPUs eliminates this volatility.

Why DePIN Compute Networks Require Bare Metal Infrastructure To Function Correctly

Render Network, Akash, io.net, and Gensyn nodes fail on AWS because virtualization breaks hardware attestation. DePIN protocols need cryptographic proof of physical GPUs and hypervisors mask the identities protocols verify. This guide covers why bare metal works, real operator economics, and setup.

When Self Hosting Vector Databases Becomes Cheaper Than SaaS

AI startups hit sticker shock when Pinecone bills jump from $50 to $3,000/month. This analysis reveals the exact tipping point where self-hosting vector databases on OpenMetal becomes cheaper than SaaS. Includes cost comparisons, migration guides for Qdrant/Weaviate/Milvus, and real ROI timelines.

How to Choose Between OpenMetal’s Five Hardware Generations for Hosted Private Cloud and Bare Metal Deployments

OpenMetal offers five hardware generations across hosted private cloud and bare metal deployments. This guide breaks down the specs, performance differences, and use cases for each generation from V1’s foundation infrastructure to V4’s latest enterprise hardware, helping you choose the right configuration for development, production, or hybrid workloads.