Blockchain validator nodes running on dedicated bare metal servers in a secure data center

When you’re running blockchain infrastructure, not all hosting environments are created equal. While shared public clouds work fine for many applications, certain blockchain workloads demand more control, security, and performance than multi-tenant environments can provide.

If you’re operating validator nodes, running MEV infrastructure, or managing privacy-sensitive blockchain applications, you need to understand why a shared public cloud might be putting your operations at risk—and what alternatives exist.

The Hidden Costs of Running Blockchain on Shared Infrastructure

Shared public cloud environments introduce several challenges for blockchain workloads:

Performance variability affects your ability to maintain consistent block times and transaction processing. Research shows that performance in public clouds can vary by up to 30% due to resource contention.

Security concerns arise from multi-tenancy, where your blockchain nodes share physical hardware with unknown neighbors. This creates potential attack vectors that don’t exist in dedicated environments.

Limited control over the underlying infrastructure prevents you from optimizing for blockchain-specific requirements like disk I/O patterns, network latency, or CPU scheduling.

5 Blockchain Workloads That Need Dedicated Infrastructure

1. Validator Nodes for Proof-of-Stake Networks

Running validator nodes on shared infrastructure is asking for trouble. Ethereum validators, for example, require exceptional uptime and consistent performance to avoid slashing penalties.

When you’re staking 32 ETH (worth over $100,000), even minor performance hiccups can cost you dearly. Validators need:

  • Sub-second response times for attestations
  • Guaranteed network bandwidth for peer-to-peer communication
  • Predictable disk I/O for blockchain state management

On OpenMetal’s bare metal servers, you get dedicated resources that eliminate noisy neighbor problems. Your validator runs on hardware you control, with network performance you can count on.

2. MEV (Maximum Extractable Value) Infrastructure

MEV searchers and block builders operate in a microsecond-sensitive environment where latency directly translates to profit or loss. Shared cloud environments simply can’t provide the consistent, ultra-low latency these systems require.

MEV infrastructure needs:

  • Direct network peering with major validators
  • Custom network routing configurations
  • Hardware-level timing precision
  • Complete isolation from other workloads

OpenMetal’s hosted private cloud gives you the control to optimize every aspect of your MEV infrastructure, from kernel parameters to network topology.

3. Privacy-Focused Blockchain Applications

Privacy-preserving blockchain applications—whether using zero-knowledge proofs, secure multi-party computation, or confidential computing—cannot afford the security risks of shared infrastructure.

These workloads require:

  • Hardware security modules (HSMs) or trusted execution environments
  • Complete memory isolation
  • Auditable security boundaries
  • Protection against side-channel attacks

When you’re processing sensitive financial data or personal information on-chain, shared cloud environments introduce unacceptable risks. Dedicated infrastructure ensures your privacy guarantees remain intact.

4. High-Frequency Oracle Networks

Oracle nodes that provide real-time price feeds or other critical data to smart contracts need rock-solid reliability. As Chainlink’s documentation emphasizes, node operators must maintain strict security and performance standards.

Oracle infrastructure demands:

  • Multiple redundant data sources
  • Consistent sub-second response times
  • Protection against manipulation attacks
  • High-availability configurations

OpenMetal’s infrastructure provides the foundation for building oracle networks that smart contracts can depend on.

5. Blockchain Archival and Analytics Nodes

Running full archival nodes or analytics infrastructure requires massive storage and compute resources. On shared cloud, you’re paying premium prices for every terabyte stored and every query processed.

Archival nodes need:

  • Petabyte-scale storage capacity
  • High-performance SSD arrays for chain data
  • Substantial RAM for in-memory databases
  • Consistent query performance for analytics

OpenMetal’s Ceph storage clusters provide the scalable, cost-effective storage infrastructure these workloads require, without the per-GB pricing that makes archival nodes prohibitively expensive on public cloud.

Why Bare Metal and Private Cloud Make Sense for Blockchain

The unique requirements of modular blockchains and other advanced blockchain architectures demand infrastructure you can customize and control.

Predictable Performance: With dedicated hardware, you eliminate the variability that plagues shared environments. Your blockchain workloads get consistent CPU cycles, memory bandwidth, and network throughput.

Enhanced Security: Physical isolation means your sensitive blockchain operations aren’t sharing hardware with potentially hostile neighbors. You control the entire security stack from hardware to application.

Cost Efficiency at Scale: While shared cloud might seem cheaper for small workloads, dedicated infrastructure becomes more economical as you scale. You’re not paying marked-up prices for compute, storage, and bandwidth.

Customization Freedom: Need specific kernel parameters? Custom network configurations? Specialized hardware? With bare metal and private cloud, you have complete control over your infrastructure stack.

Making the Move to Dedicated Blockchain Infrastructure

Transitioning from shared cloud to dedicated infrastructure doesn’t have to be complex. Here’s how to evaluate whether your blockchain workloads need dedicated resources:

  • Calculate your true cloud costs including compute, storage, bandwidth, and any blockchain-specific services
  • Assess your performance requirements focusing on latency, throughput, and consistency needs
  • Evaluate security requirements particularly for validator nodes or privacy-sensitive applications
  • Consider your scaling trajectory as dedicated infrastructure becomes more cost-effective at scale

If you’re running any of these five blockchain workloads on shared public cloud, it’s time to reconsider. The risks to performance, security, and your bottom line are too significant to ignore.

OpenMetal’s bare metal and private cloud solutions provide the dedicated infrastructure your blockchain workloads need, with the support and expertise to ensure successful deployment.

Read More on the OpenMetal Blog

Infrastructure Consistency for SaaS Companies: Scaling Without Losing Control

Infrastructure inconsistency silently undermines SaaS scalability, creating performance unpredictability, security gaps, and operational complexity. This comprehensive guide shows technical leaders how to achieve consistency without sacrificing agility through dedicated private cloud infrastructure, standardized deployment patterns, and systematic implementation strategies that prevent configuration drift while supporting rapid growth.

Choosing the Right Infrastructure for Privacy-Centric Blockchain Apps

Privacy-first blockchain applications need infrastructure that supports confidential computing, network isolation, and regulatory compliance. Discover how bare metal and private cloud solutions provide the foundation for zero-knowledge proofs, confidential smart contracts, and secure multi-party computation.

Architecting Your Predictive Analytics Pipeline on OpenMetal for Speed and Accuracy

Learn how to architect a complete predictive analytics pipeline using OpenMetal’s dedicated infrastructure. This technical guide covers Ceph storage, GPU training clusters, and OpenStack serving – delivering superior performance and cost predictability compared to public cloud alternatives.

How Hidden Cloud Costs Quietly Erode Portfolio EBITDA

Hidden cloud costs are silently destroying SaaS profit margins. PE firms lose billions in portfolio value due to unpredictable usage fees, resource waste, and egress charges. Learn how private cloud infrastructure delivers 30-50% cost savings and predictable EBITDA improvement.

How PE Firms Can Reduce Cloud Costs Across Their SaaS Portfolio with OpenMetal

PE firms face mounting cloud costs across SaaS portfolios. Learn how OpenMetal’s private cloud delivers 30-60% cost savings, predictable pricing, and improved margins that directly boost portfolio valuations and exit multiples.

20 Gbps NICs and Free Internal Traffic Matter: The Hidden Power of OpenMetal’s Private Networking

Learn how OpenMetal’s private networking architecture delivers 20 Gbps per server, free internal traffic, customer-specific VLANs with VXLAN support, and predictable egress billing. Perfect for AI training clusters, database replication, and high-throughput workloads requiring performance without bandwidth constraints.

Private Cloud vs. Public Cloud for Confidential Workloads: A Risk and Control Comparison

Public cloud confidential computing promises security but retains provider control over critical trust components. Private cloud infrastructure eliminates third-party trust dependencies, providing genuine confidentiality for sensitive workloads through dedicated hardware and transparent attestation.

Powering Your Data Warehouse with PostgreSQL and Citus on OpenMetal for Distributed SQL at Scale

Learn how PostgreSQL and Citus on OpenMetal deliver enterprise-scale data warehousing with distributed SQL performance, eliminating vendor lock-in while providing predictable costs and unlimited scalability for modern analytical workloads.